Supporting Information for

Directed Assembly of Chiral Organometallic Squares that Exhibit Dual Luminescence

Suk Joong Lee, Charles R. Luman, Felix N. Castellano, and Wenbin Lin*

Department of Chemistry, CB#3290, University of North Carolina, Chapel Hill, NC 27599, USA and Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA

Experimental Section.

Materials and General Procedures. All of the chemicals were obtained from commercial sources and used without further purification. All of the reactions and manipulations were carried out under N₂ with the use of standard inert-atmosphere and Schlenk techniques. Solvents used in the reactions were dried by standard procedures. UV-Visible spectra were obtained using a Shimadzu UV-2401PC spectrophotometer. Circular dichroism (CD) spectra were recorded on a Jasco J-720 spectropolarimeter. The IR spectra were recorded from KBr pellets on a Nicolet Magna-560 FT-IR spectrometer. NMR spectra were recorded on a Bruker NMR 400 DRX spectrometer. ¹H-NMR spectra were recorded at 400 MHz and referenced to the proton resonance resulting from incomplete deuteration of deuterated chloroform (δ 7.26). ¹³C{¹H} NMR spectra were recorded at 100 MHz, and all of the chemical shifts are reported downfield in ppm relative to the carbon resonance of the methyl group of chloroform-d₁ (δ 77.0). Mass spectra were recorded on an Agilent 1100 series LC/MSD, MALDI-TOF from UIUC mass spectrometry laboratory, and FAB from UIUC mass spectrometry laboratory and MSU mass spectrometry facility.

6,6'-Dibromo-2,2'-dihydroxy-1,1'-binaphthalene was synthesized by bromination of 1,1'-bi-2-naphthol in 99.9% yield according to the literature procedures,¹ while 6,6'dibromo-2,2'-diethoxy-1,1'-binaphthalene was obtained from 6,6'-dibromo-2,2'dihydroxy-1,1'-binaphthalene in quantitative yield according to the literature procedures.² 4,4'-dibromo-6,6'-dichloro-2,2'-diethoxy-1,1'-binaphthalene, 4,4'-dibromo-6,6'dichloro-2,2'-dimethoxy-1,1'-binaphthalene, 6,6'-dichloro-2,2'-dibenyloxy-4,4'dibromo-1,1'-binaphthalene, 6,6'-dichloro-2,2'-dimethoxy-4,4'-bis(ethynyl)-1,1'binaphthalene (\mathbf{L}_{1a}), and 6,6'-dichloro-2,2'-diethoxy-4,4'-bis(ethynyl)-1,1'-binaphthalene (\mathbf{L}_{2a}) were prepared according to the procedures published by us previously.³ *cis*-Pt(PEt_3)₂Cl₂ was prepared by following modified literature procedures.⁴

6,6'-dichloro-2,2'-dibenzyloxy-4,4'-bis(ethynyl)-1,1'-binaphthalene (L_{3a}). A mixture of 4,4'-dibromo-6,6'-dichloro-2,2'-dibenzyloxy-1,1'-binaphthalene (900 mg, 1.3 mmol), Pd(PPh₃)₂Cl₂ (20 mg, 0.03 mmol), CuI (20 mg, 1 mmol), and trimethylsilylacetylene (1.3 g, 13 mmol) in 6.5 mL of toluene and 6.5 mL of triethylamine was refluxed under N₂ atmosphere for 48 h. The volatiles were removed under reduced pressure and the residue was extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to dryness in vacuo to

¹. Dotsevi Yao Sogah, G.; Cram, D.J. J. Am. Chem. Soc. 1979, 101, 3035-3042.

². Duessen, H.J.; Hendrickx, E.; Boulton, C.; Krog, D.; Clays, K.; Bechgaard, K.; Persoons, A.; Bjornholm, T. J. Am. Chem. Soc. **1996**, 118, 6841.

³. (a) Lee, S.J.; Lin, W. J. Am. Chem. Soc. **2002**, 124, 4554. (b) Lee, S.J.; Hu, A-G.; Lin, W. J. Am. Chem. Soc., **2002**, 124, 12948.

⁴. Parshall, G.W. *Inorg. Synth.* **1970**, *12*, 26-33.

afford yellow powdery product which was purified by silica-gel column chromatography (hexane/ethyl acetate: 10:0.25 (v/v)) to afford pure 6,6'-dichloro-2,2'-dibenzyloxy-4,4'-bis(trimethylsilylethynyl)-1,1'-binaphthalene intermediate.

6,6'-Dichloro-2,2'-dibenzyloxy-4,4'-bis(trimethylsilylethynyl)-1,1'-binaphthalene obtained from the above reaction was treated with K₂CO₃ (525 mg, 3.8 mmol) in a mixture of THF (18 mL) and MeOH (18 mL) for 2 h. After workup, pale yellow powdery crude product was purified by silica-gel column chromatography (ethyl acetate/hexane: 1:9 (v/v)) to afford 312 mg of pure 6,6'-dichloro-2,2'-dibenzyloxy-4,4'bis(ethynyl)-1,1'-binaphthalene (41% overall yield). ¹H NMR (CDCl₃): δ 8.36 (d, ⁴*J*_{H-H} = 2.3 Hz, 2H), 7.67 (s, 2H), 7.20 (dd, ³*J*_{H-H} = 9.1, ⁴*J*_{H-H} = 2.3 Hz, 2H), 7.14 (m, 6H), 7.04 (d, ³*J*_{H-H} = 9.1 Hz, 2H), 6.93 (d, *J*_{H-H} = 7.64 Hz, 4H), 5.03 (s, 4H), 3.57 (s, 2H). ¹³C{¹H} NMR (CDCl₃): δ 153.44, 136.56, 132.07, 131.14, 130.34, 128.32, 128.09, 127.67, 127.22, 126.64, 125.11, 121.65, 121.09, 120.67, 83.07, 81.04, 71.21. IR (cm⁻¹): 3288.2(m), 3061.7(w), 3030.4(w), 2935.9(w), 1734.4(m), 1700.9(w), 1576.7(s), 1559.5(m), 1487.8(m), 1453.2(m), 1372.5(s), 1345.4(s), 1319.8(s), 1267.7(w), 1222.9(s), 1145.6(w), 1122.0(m), 1090.3(s), 1027.0(m), 815.9(m), 734.6(m), 695.5(m), 611.2(m). MS (LCMS) *m/z* 583 (Caled *m/z* 583.5 for M⁺).

6,6'-dichloro-2,2'-dimethoxy-4- trimethylsilylethynyl -4'-ethynyl-1,1'binaphthalene (L₁). A solution of L_{1a} (500 mg, 1.16 mmol) in THF (10 mL) was allowed to cool down to -78°C and n-BuLi (1.6 M in hexane, 0.69 mL, 1.1 mmol) was added slowly. After the addition was completed, the reaction mixture was allowed to warm to room temperature. After the reaction mixture was again cooled down to -78°C, trimethylbromosilane (0.19 mL, 1.4 mmol) was added dropwise. The reaction mixture

was then allowed to stir for 6 h at RT. The volatiles were removed under reduced pressure and the residue was extracted with EtOAc. The extract was washed with water, dried over anhydrous $MgSO_4$ and evaporated to dryness in vacuo to afford yellow oily product which was purified by silica-gel column chromatography (ethyl acetate/hexane: 1:9 (v/v)) to afford pure 6,6'-dichloro-2,2'-dimethoxy-4- trimethylsilylethynyl -4'bis(ethynyl)-1,1'-binaphthalene (315.4 mg, 54% yield). ¹H NMR (CDCl₃): δ 8.35 (d, ${}^{4}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$, 8.31 (d, ${}^{4}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.19 (dd, ${}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}$), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, {}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, {}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (dd, {}^{3}J_{\text{H-H}} = 1.8 \text{ Hz}, 1\text{H}), 7.67 (s, 1H), 7.64 (s, 1H), 7.19 (s, 1H), 7. $_{\rm H} = 9.2, {}^{4}J_{\rm H-H} = 1.8$ Hz, 1H), 7.18 (dd, ${}^{3}J_{\rm H-H} = 9.2, {}^{4}J_{\rm H-H} = 1.8$ Hz, 1H), 6.99 (d, ${}^{3}J_{\rm H-H} =$ 9.2 Hz, 1H), 6.98 (d, ${}^{3}J_{H-H} = 9.2$ Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.58 (s, 1H), 0.39 (s, 9H). ¹³C{¹H} NMR (CDCl₃): δ154.21, 154.19, 131.92, 131.88, 130.86, 130.67, 130.10, 130.00, 128.06, 127.99, 126.95, 126.87, 125.31, 125.09, 121.71, 120.64, 120.60, 120.03, 119.33, 118.76, 102.22, 100.90, 82.98, 81.10, 56.68, 56.65, 0.03. IR (cm⁻¹): 3296.9(m), 2957.1(m), 2937.4(m), 2841.1(m), 2152.34(m), 1576.8(s), 1559.6(m), 1488.5(m), 1458.1(m), 1334.3(s), 1320.7(s), 1263.2(m), 1231.6(m), 1230.6(m), 1203.3(m), 1145.1(m), 1125.9(s), 1092.5(s), 1068.2(m), 1046.2(m), 948.4(w), 900.5(w), 881.15(m), 857.6(s), 844.5(s), 814.9(m), 760.3(m), 711.4(m). MS (LCMS) m/z 501 (Calcd m/z 502.1 for M^+).

6,6'-dichloro-2,2'-diethoxy-4- trimethylsilylethynyl -4'-bis(ethynyl)-1,1'binaphthalene (L₂). A solution of L_{2a} (456 mg, 1 mmol) in THF (15 mL) was allowed to cool down to -78°C and n-BuLi (1.6 M in hexane, 1 mmol, 0.625 mL) was added slowly. After the addition was completed, the reaction mixture was allowed to warm to room temperature. After the reaction mixture was again cooled down to -78°C, trimethylbromosilane (1.2 mmol, 0.158 mL) was added dropwise. The reaction mixture

was allowed to stir for 6 h at RT. The volatiles were removed under reduced pressure and the residue was extracted with EtOAc. The extract was washed with water, dried over anhydrous $MgSO_4$ and evaporated to dryness in vacuo to afford vellow oily product which was purified by silica-gel column chromatography (ethyl acetate/hexane: 0.5:9.5 (v/v)) to afford pure 6,6'-dichloro-2,2'-diethoxy-4- trimethylsilylethynyl -4'-ethynyl-1,1'-binaphthalene (276 mg, 52% yield). ¹H NMR (CDCl₃): δ 8.34 (d, ⁴J_{H-H} = 2.0 Hz, 1H), 8.30 (d, ${}^{4}J_{H-H} = 2.0$ Hz, 1H), 7.64 (s, 1H), 7.61 (s, 1H), 7.19 (dd, ${}^{3}J_{H-H} = 9.2$, ${}^{4}J_{H-H} =$ 2.0 Hz, 2H), 7.00 (d, ${}^{3}J_{H-H} = 9.2$ Hz, 1H), 6.99 (d, ${}^{3}J_{H-H} = 9.2$ Hz, 1H), 4.02 (m, 4H), 3.57 (s, 2H), 1.06 (m, 6 H), 0.38 (s, 9H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 153.65, 132.09, 132.05, 130.82, 130.65, 130.14, 130.05, 127.82, 127.75, 127.18, 127.10, 125.26, 125.03, 121.64, 121.44, 120.89, 120.37, 120.32, 102.37, 100.70, 82.79, 82.77, 81.21, 65.21, 65.15, 14.82, 0.03. IR (cm⁻¹): 3291.6(br), 2976.7(m), 2930.5(m), 2896.9(w), 2363.3(w), 2151.4(m), 1653.1(w), 1576.5(s), 1558.9(s), 1539.9(w), 1489.6(m), 1372.6(m), 1332.7(s), 1320.0(s), 1262.4(w), 1249.8(m), 1225.9(m), 1199.4(w), 1145.7(m), 1124.2(s), 1091.8(s), 1047.9(m), 879.6(w), 856.4(s), 843.6(s), 815.7(m), 759.4(m), 668.3(m). MS (LCMS) m/z 532 (Calcd m/z 531.5 for M⁺).

6,6'-dichloro-2,2'-dibenzyloxy-4- trimethylsilylethynyl -4'-bis(ethynyl)-1,1'binaphthalene (L₃). A solution of L_{3a} (1.2 g, 2 mmol) in THF (18 mL) was allowed to cool down to -78°C and n-BuLi (1.6 M in hexane, 1.25 mL, 2 mmol) was added slowly. After the addition was completed, the reaction mixture was allowed to warm to room temperature. After the reaction mixture was again cooled down to -78°C, trimethylbromosilane (0.33 mL, 2.4 mmol) was added dropwise. The reaction mixture was allowed to stir for 6 h at RT. The volatiles were removed under reduced pressure and

the residue was extracted with EtOAc. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to dryness in vacuo to afford yellow oily product which was purified by silica-gel column chromatography (ethyl acetate/hexane: 0.5:9.5 (v/v)) to afford pure 6,6'-dichloro-2,2'-dibenzyloxy-4- trimethylsilylethynyl -4'bis(ethynyl)-1,1'-binaphthalene (590 mg, 45% yield). ¹H NMR (CDCl₃): δ 8.35 (d, ⁴J_{H-H} = 2.1 Hz, 1H), 8.32 (d, ${}^{4}J_{H-H}$ = 2.1 Hz, 1H), 7.67 (s, 1H), 7.66 (s, 1H), 7.19 (m, 2H), 7.15 (m, 6H), 7.04 (d, ${}^{3}J_{H-H} = 9.0$ Hz, 1H), 7.02 (d, ${}^{3}J_{H-H} = 9.0$ Hz, 1H), 6.93 (m, 4H), 5.04 (s, 2H), 5.02(s, 2H), 3.57 (s, 1H), 0.39 (s, 9H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 153.54, 153.45, 136.65, 136.57, 132.13, 132.06, 131.12, 130.98, 130.34, 130.30, 128.32, 128.27, 128.05, 127.99, 127.65, 127.61, 127.22, 127.19, 126.68, 126.62, 125.34, 125.08, 121.79, 121.74, 121.33, 121.10, 120.60, 120.57, 102.23, 101.04, 83.02, 81.08, 71.23, 71.21, 0.03. IR (cm⁻¹): 3291.3(br), 3062.6(w), 3034.1(w), 2958.1(m), 2148.8(m), 2112.6(sh), 1701.1(w), 1576.7(s), 1488.1(m), 1453.4(m), 1333.9(s), 1319.8(s), 1262.2(m), 1249.5(s), 1223.6(s), 1193.0(w), 1146.1(m), 1123.2(m), 1092.0(s), 1053.1(m), 1027.4(s), 961.6(w), 880.57(w), 843.6(s), 815.7(m), 759.3(m), 733.5(m), 694.5(s), 657.5(m), 618.9(w). MS (LCMS) m/z 654 (Calcd m/z 654.2 for M⁺).

cis-Pt(PEt₃)₂(L₁)₂ (Pt-2L₁). To a 200 mL two-necked round bottom flask containing *cis*-Pt(PEt₃)₂Cl₂ (116 mg, 0.23 mmol), L₁ (260 mg, 0.52 mmol) and CuCl (6 mg, 0.06 mmol) was added diethylamine (70 mL) and the reaction mixture was allowed to stir at room temperature for 12 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford yellow powdery product which was further purified by silica-gel column

chromatography (dichloromethane/hexane: 3:1 v/v) to give *cis*-Pt(PEt₃)₂(L₁)₂ (244 mg, 74 %). ¹H NMR (CDCl₃), 8.69 (d, ⁴J_{H-H} = 2.3 Hz, 2H), 8.27 (d, ⁴J_{H-H} = 2.3 Hz, 2H), 7.62 (s, 2H), 7.61(s, 2H), 7.15 (dd, ³J_{H-H} = 9.1, ⁴J_{H-H} = 2.3 Hz, 2H), 7.06 (dd, ³J_{H-H} = 9.1, ⁴J_{H-H} = 2.3 Hz, 2H), 7.06 (dd, ³J_{H-H} = 9.1, ⁴J_{H-H} = 2.3 Hz, 2H), 7.04 (d, ³J_{H-H} = 9.1 Hz, 2H), 6.87 (d, ³J_{H-H} = 9.1 Hz, 2H), 3.73 (s, 6H), 3.63(s, 6H), 2.23 (m, 12H), 1.30 (m, 18H), 0.37(s, 18H). ¹³C{¹H} NMR (CDCl₃): δ 154.67, 153.49, 132.36, 131.91, 130.74, 130.58, 130.14, 129.35, 127.69, 127.49, 127.09, 126.75, 126.38, 125.12, 121.74, 121.11, 119.32, 117.60, 116.33, 110.72 (dd, ²J_{trans P-C} = 142.3, ²J_{cis P-C} = 22.1), 104.93 (t, ³J_{P-C} = 16.8), 102.59, 100.39, 56.86, 56.57, 17.46 (t, J_P C = 17.7), 8.59, 0.05. ³¹P{¹H} NMR (CDCl₃): 3.56 (s, J_{Pt-P} = 2266.7). IR (cm⁻¹): 2962.1(m), 2932.9(m), 2841.2(w), 2150.3(m), 2105.7(m), 1574.2(s), 1486.7(s), 1457.9(m), 1332.9(s), 1317.5(s), 1249.7(s), 1227.3(s), 1201.2(m), 1125.5(s), 1143.5(m), 1092.6(s), 1069.1(w), 1039.7(s), 952.7(w), 845.8(s), 815.7(m), 761.0(m), 724.7(w). MS (FAB): m/z 1434.4 (calculated *m*/z 1436.4 for [M]⁺).

cis-Pt(PEt₃)₂(L₂)₂ (Pt-2L₂). To a two-necked round bottom flask containing *cis*-Pt(PEt₃)₂Cl₂ (83 mg, 0.16 mmol), L₂ (200 mg, 0.38 mmol) and CuCl (3 mg, 0.03 mmol) was added diethylamine (75 mL) and the reaction mixture was allowed to stir at room temperature for 12 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford yellow powdery product which was further purified by silica-gel column chromatography (dichloromethane/hexane: 1:1 (v/v)) to give *cis*-Pt(PEt₃)₂(L₂)₂ (212 mg, 89 %). ¹H NMR (CDCl₃), 8.68 (d, ⁴J_{H-H} = 2.2 Hz, 2H), 8.27 (d, ⁴J_{H-H} = 2.2 Hz, 2H), 7.58 (s, 4H), 7.14 (dd, ³J_{H-H} = 9.1, ⁴J_{H-H} = 2.1 Hz, 2H), 7.08 (d, ³J_{H-H} = 9.1 Hz, 2H), 7.04 (dd, ³J_{H-H} = 9.1, ⁴J_{H-H} =

2.1 Hz, 2H), 6.91 (d, ${}^{3}J_{\text{H-H}} = 9.1$ Hz, 2H), 3.99 (m, 4H), 3.90 (m, 4H), 2.23 (m, 12H), 1.30 (m, 18H), 1.02 (t, ${}^{3}J_{\text{H-H}} = 6.9$, 6H), 0.93 (t, ${}^{3}J_{\text{H-H}} = 6.9$, 6H), 0.37 (s, 18H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 154.02, 153.84, 132.44, 131.99, 131.02, 130.45, 130.11, 129.23, 127.69, 127.37, 127.09, 126.79, 126.65, 126.53, 125.00, 122.77, 120.92, 120.72, 119.02, 117.24, 111.66 (dd, ${}^{2}J_{\text{trans P-C}} = 145.0$, ${}^{2}J_{\text{cis P-C}} = 22.4$), 104.72 (t, ${}^{3}J_{\text{P-C}} = 17.4$), 102.63, 100.15, 65.31, 64.81, 17.43 (t, $J_{\text{P-C}} = 17.4$), 14.86, 8.56, 0.033. ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (CDCl₃): 3.59 (s, $J_{\text{Pt-P}} = 2267.1$). IR (cm⁻¹): 2966.7(m), 2933.6(m), 2148.3(m), 2106.2(m), 1573.8(s), 1486.2(m), 1453.2(w), 1450.0(w), 1370.8(s), 1330.4(s), 1318.9(s), 1249.8(m), 1222.0(m), 1196.3(w), 1166.7(m), 1143.9(m), 1123.6(s), 1091.9(s), 1040.2(s), 843.4(s), 815.2(m), 760.8(s), 723.3(m), 698.7(m), 642.8(m), 623.7(m). MS (FAB): m/z 1493.4 (calculated *m/z* 1492.5 for [M]⁺).

cis-Pt(PEt₃)₂(L₃)₂ (Pt-2L₃). To a 250 mL two-necked round bottom flask containing *cis*-Pt(PEt₃)₂Cl₂ (161 mg, 0.32 mmol), L₃ (511.4 mg, 0.78 mmol) and CuCl (6 mg, 0.06 mmol) was added diethylamine (120 mL) and the reaction mixture was allowed to stir at room temperature for 12 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford yellow powdery product which was further purified by silica-gel column chromatography (dichloromethane/hexane: 1:1 (v/v)) to give *cis*-Pt(PEt₃)₂(L₃)₂ (420 mg, 74 %). ¹H NMR (CDCl₃), δ 8.74 (d, ⁴*J*_{H-H} = 1.9 Hz, 2H), 8.28 (d, ⁴*J*_{H-H} = 1.9 Hz, 2H), 7.62 (s, 2H), 7.61(s, 2H), 7.12 (m), 7.06 (m), 6.98 (m), 6.90 (m), 6.82 (d), 4.97 (s, 4H), 4.91 (s, 4H), 2.21 (m, 12H), 1.29 (m, 18H), 0.37(s, 18H). ¹³C{¹H} NMR (CDCl₃): δ 153.89, 153.72, 137.21, 136.90, 132.49, 132.07, 131.00, 130.79, 130.37, 129.61, 128.20,

128.05, 127.75, 127.68, 127.40, 127.27, 127.21, 127.14, 126.77, 126.69, 126.68, 126.04, 125.09, 122.92, 121.08, 121.04, 119.13, 117.40, 111.09 (dd, ${}^{2}J_{trans P-C} = 135.9$, ${}^{2}J_{cis P-C} =$ 19.0), 104.55 (t, ${}^{3}J_{P-C} = 16.0$), 102.55, 100.46, 71.36, 70.95, 17.47 (t, $J_{P-C} = 18.1$), 8.59, 0.05. ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃): 3.56 (s, $J_{Pt-P} = 2264.8$). IR (cm⁻¹): 3062.5(w), 2961.3(m), 2874.3(m), 2146.4(m), 2106.6(s), 1572.5(s), 1486.6(m), 1453.4(m), 1411.5(w), 1375.6(m), 1331.7(s), 1318.6(s), 1249.4(s), 1219.6(m), 1187.9(w), 1144.5(m), 1122.6(m), 1092.2(s), 1038.8(s), 1027.5(s), 880.7(w), 844.5(s), 814.8(m), 760.6(m), 733.4(m), 694.8(m). MS (FAB): m/z 1739.8 (calculated *m/z* 1740.7 for [M]⁺).

cis-Pt(PEt₃)₂(L_{1a})₂ (Pt-2L_{1a}). To a 25 mL two-necked round bottom flask containing Pt-2L₁ (230 mg, 0.16 mmol), and K₂CO₃ (140 mg, 1 mmol) was added a mixture of THF (4 mL) and MeOH (4 mL), and the reaction mixture was allowed to stir at room temperature for 2 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford white powdery product which was further purified by silica-gel column chromatography (dichloromethane/hexane: 5:1 (v/v)) to give $Pt-2L_{1a}$ (167 mg, 81 %). ¹H NMR (CDCl₃), δ 8.70 (d, ${}^{4}J_{\text{H-H}}$ = 2.1 Hz, 2H), 8.12 (d, ${}^{4}J_{\text{H-H}}$ = 2.1 Hz, 2H), 7.65 (s, 2H), 7.62 (s, 2H), 7.18 (dd, ${}^{3}J_{H-H} = 9.0$, ${}^{4}J_{H-H} = 2.1$ Hz, 2H), 7.067 (dd, ${}^{3}J_{H-H} = 9.0$, ${}^{4}J_{H-H} = 2.1$ Hz, 2H), 7.065 (d, ${}^{3}J_{H-H} = 9.0$ Hz, 2H), 6.89 (d, ${}^{3}J_{H-H} = 9.0$ Hz, 2H), 3.72 (s, 6H), 3.65 (s, 6H), 3.55 (s, 2H), 2.23 (m, 12H), 1.31 (m, 18H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 154.67, 154.46, 132.37, 131.89, 130.79, 130.75, 130.24, 129.38, 127.79, 127.55, 127.46, 127.14, 126.78, 126.36, 124.92, 122.11, 120.13, 119.86, 117.52, 116.16, 112.52 (dd, ${}^{2}J_{\text{trans P-C}} = 132.6$, $^{2}J_{\text{cis P-C}} = 24.6$, 104.67 (t, $^{3}J_{\text{P-C}} = 21.9$), 82.57, 81.36, 56.89, 56.56, 17.46 (t, $J_{\text{P-C}} = 16.8$),

8.60 (t, ${}^{2}J_{P-C} = 11.2$). ${}^{31}P{}^{1}H$ NMR (CDCl₃): 3.49 (s, $J_{Pt-P} = 2265.1$). IR (cm⁻¹): 3292.1(br), 3061.6(m), 2962.2(m), 2934.3(m), 2839.8(w), 2106.8(m), 1575.4(s), 1486.7(s), 1458.1(s), 1331.2(s), 1317.8(s), 1261.1(w), 1227.8(s), 1200.37(w), 1124.1(s), 1143.4(m), 1090.2(s), 10067.8(m), 1039.6(s), 897.7(m), 814.2(m), 767.6(s), 724.1(m). MS (FAB): m/z 1291.3 (calculated *m/z* 1292.0 for [M]⁺).

 $cis-Pt(PEt_3)_2(L_{2a})_2$ (Pt-2L_{2a}). To a 50 mL two-necked round bottom flask containing cis- Pt-2L₂ (540 mg, 0.36 mmol), and K₂CO₃(193 mg, 1.4 mmol) was added a mixture of THF (20ml) and MeOH (20ml), and the reaction mixture was allowed to stir at room temperature for 2 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford white powdery product which was further purified by silica-gel column chromatography (dichloromethane/hexane: 3:1 (v/v)) to give cis- Pt-2L_{2a} (393 mg, 81 %). ¹H NMR (CDCl₃), $\delta 8.69$ (d, ${}^{4}J_{\text{H-H}} = 2.1$ Hz, 2H), 8.30 (d, ${}^{4}J_{\text{H-H}} = 2.1$ Hz, 2H), 7.62 (s, 2H), 7.59 (s, 2H), 7.16 (dd, ${}^{3}J_{H-H} = 9.1$, ${}^{4}J_{H-H} = 2.1$ Hz, 2H), 7.10 (d, ${}^{3}J_{H-H} = 9.1$ Hz, 2H), 7.05 (dd, ${}^{3}J_{\text{H-H}} = 9.1, {}^{4}J_{\text{H-H}} = 2.1 \text{ Hz}, 2\text{H}$, 6.91 (d, ${}^{3}J_{\text{H-H}} = 9.1 \text{ Hz}, 2\text{H}$), 3.98 (m, 4H), 3.92 (m, 4H), 3.54 (s, 2H), 2.24 (m, 12H), 1.30 (m, 18H), 1.03 (t, ${}^{3}J_{H-H} = 7.0, 6H$), 0.95 (t, ${}^{3}J_{H-H} = 7.0, 6H$) 6H). ¹³C{¹H} NMR (CDCl₃): δ154.02, 153.83, 132.49, 132.01, 130.79, 130.68, 130. 23, 129.29, 127.77, 127.51, 127.17, 126.87, 126.69, 126.55, 124.83, 123.12, 121.46, 119.77, 118.99, 117.14, 112.46 (dd, ${}^{2}J_{\text{trans P-C}} = 142.5$, ${}^{2}J_{\text{cis P-C}} = 23.1$), 105.08 (t, ${}^{3}J_{\text{P-C}} = 17.1$), 82.40, 81.43, 65.39, 64.82, 17.49 (t, $J_{P-C} = 17.4$), 14.87, 8.59 (t, ${}^{2}J_{P-C} = 10.5$). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): 3.49 (s, $J_{Pt-P} = 2267.9$). IR (cm⁻¹): 3288.2(m), 3060.7(w), 2966.4(m), 2931.2(m), 2873.1(m), 2101.9(m), 1670.7(s), 1576.2(s), 1555.3(s), 1487.1(m), 1369.0(s),

1350.1(s), 1320.3(s), 1316.8(s), 1260.5(w), 1221.6(m), 1196.6(w), 1143.3(m), 1120.7(m), 1089.3(s), 1039.2(s), 1003.8(sh), 875.5(m), 769.2(m), 720.9(m). MS (FAB): m/z 1349.4 (calculated *m/z* 1348.1 for [M]⁺).

 $cis-Pt(PEt_3)_2(L_{3a})_2$ (Pt-2L_{3a}). To a 50 mL two-necked round bottom flask containing cis- Pt-2L₃ (370 mg, 0.21 mmol), and K₂CO₃ (175 mg, 1.26 mmol) was added a mixture of THF (10ml) and MeOH (10ml), and the reaction mixture was allowed to stir at room temperature for 2 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford white powdery product which was further purified by silica-gel column chromatography (dichloromethane/hexane: 3:2 (v/v)) to give $Pt-2L_{3a}$ (293 mg, 87 %). ¹H NMR (CDCl₃), δ 8.75 (d, ${}^{4}J_{\text{H-H}}$ = 2.0 Hz, 2H), 8.32 (d, ${}^{4}J_{\text{H-H}}$ = 2.0 Hz, 2H), 7.631 (s, 2H), 7.629 (s, 2H), 7.13 (m), 7.06 (m), 7.00 (m), 6.94 (m), 6.82 (d), 4.98 (s, 6H), 4.94 (s, 6H), 2.21 (m, 12H), 1.29 (m, 18H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 153.89, 153.64, 137.21, 136.83, 132.52, 132.03, 131.02, 130.97, 130.42, 129.65, 128.25, 128.05, 127.78, 127.46, 127.35, 127.24, 127.18, 126.81, 126.71, 126.66, 12.87, 123.24, 121.62, 119.98, 119.13, 117.29, 110.41 $(dd, {}^{2}J_{trans P-C} = 139.8, {}^{2}J_{cis P-C} = 21.2), 105.04 (t, {}^{3}J_{P-C} = 17.2), 82.60, 81.31, 71.36, 70.97,$ 17.47 (t, $J_{P-C} = 16.9$), 8.60. ³¹P{¹H} NMR (CDCl₃): 3.50 (s, $J_{Pt-P} = 2264.7$). IR (cm⁻¹): 3288.2(m), 3060.9(w), 3028.9(w), 2964.3(m), 2930.2(m), 2873.0(m), 2102.2(s), 1572.6(s), 1486.5(s), 1452.9(s), 1375.4(m), 1329.8(s), 1316.9(s), 1261.5(w), 1219.4(m), 1188.4(m), 1144.2(m), 1120.8(m), 1090.8(s), 1027.2(s), 917.2(w), 898.9(m), 880.6(w), 835.5(s), 814.5(m), 767.8(m), 733.4(s), 695.3(s), 668.4(m). MS (FAB): m/z 1596.5 (calculated m/z 1596.4 for [M]⁺).

 $[cis-Pt(PEt_3)_2(L_{1a})]_4$ (1). To a 25 mL two-necked round bottom flask containing Pt-2L_{1a} (34.9 mg, 0.027 mmol), cis-Pt(PEt₃)₂Cl₂ (13.6 mg, 0.027 mmol) and CuCl (0.8 mg, 0.008 mmol) were added CH₂Cl₂ (13.5 ml) and diethylamine (0.6 ml) at -5 °C, and the reaction mixture was allowed to stir at 0°C for 12 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH_2Cl_2 . The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford white powdery product which was further purified by silica-gel column chromatography (dichloromethane/ethyl acetate/hexane: 2:2:3 (v/v)) to give $[cis-Pt(PEt_3)_2(L_{1a})]_4$ (19 mg, 41 %). ¹H NMR (CDCl₃), δ 8.66 (d, ⁴J_{H-H} = 2.2 Hz, 8H), 7.60 (s, 8H), 7.03 (dd, ${}^{3}J_{H-H} = 9.1$, ${}^{4}J_{H-H} = 2.2$ Hz, 8H), 6.94 (d, ${}^{3}J_{H-H} = 9.1$ Hz, 8H), 3.64 (s, 24H), 2.22 (m, 48H), 1.28 (m, 72H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 154.87, 132.28, 130.86, 129.20, 126.92, 126.82, 126.77, 126.55, 118.11, 117.76, 111.65 (dd, ${}^{2}J_{\text{trans P-C}} =$ 147.0, ${}^{2}J_{cis P-C} = 22.3$), 104.83 (t, ${}^{3}J_{P-C} = 16.4$), 56.85, 17.47 (t, $J_{P-C} = 17.7$), 8.59. ³¹P{¹H} NMR (CDCl₃): 3.54 (s, $J_{Pt-P} = 2263.2$). IR (cm⁻¹): 3446.8(br), 3061.9(w), 2962.9(m), 2932.4(m), 2872.8(m), 2839.5(w), 2105.6(s), 1653.2(m), 1570.8(s), 1559.1(s), 1539.1(w), 1485.6(m), 1457.1(m), 1436.8(w), 1419.2(w), 1352.5(s), 1328.3(m), 1314.8(m), 1225.4(m), 1198.5(w), 1123.5(m), 1142.0(w), 1090.5(s), 1067.1(w), 1037.9(s), 948.9(w), 898.2(m), 856.4(w), 767.7(s), 724.7(m), 668.3(w), 636.4(w). MS (FAB): m/z 3442.4 (calculated m/z 3442.7 for $[M]^+$). Anal. Calcd for C₁₅₂H₁₇₆Cl₈O₈P₈Pt₄·2CHCl₃: C, 50.24; H, 4.87. Found: C, 49.64; H, 4.70.

 $[cis-Pt(PEt_3)_2(L_{2a})]_4$ (2). To a 25 mL two-necked round bottom flask containing Pt-2L_{2a} (24 mg, 0.018 mmol), $cis-Pt(PEt_3)_2Cl_2$ (9 mg, 0.018 mmol) and CuCl (0.8 mg, 0.004 mmol) were added CH₂Cl₂ (9 mL) and diethylamine (0.4 mL) at -20°C, and the

reaction mixture was allowed to stir at -20°C for 12 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH_2Cl_2 . The extract was washed with water, dried over anhydrous MgSO₄ and evaporated to afford white powdery product which was further purified by silica-gel column chromatography (dichloromethane/ethyl acetate/hexane: 2:2:5 v/v) to give $[cis-Pt(PEt_3)_2(L_{2a})]_4$ (15 mg, 46 %). ¹H NMR (CDCl₃), δ 8.65 (d, ⁴J_{H-H} = 2.0 Hz, 8H), 7.57 (s, 8H), 7.03 (dd, ${}^{3}J_{H-H} = 8.9$, ${}^{4}J_{H-H} = 2.0$ Hz, 8H), 6.99 (d, ${}^{3}J_{H-H} = 8.9$ Hz, 8H), 3.88 (m, 16H), 2.23 (m, 48H), 1.28 (m, 72H), 0.91 (t, ${}^{3}J_{H-H} = 7.0$ Hz). ${}^{13}C{}^{1}H$ NMR $(CDCl_3)$: δ 154.23, 132.38, 130.92, 130.88, 129.09, 127.16, 126.50, 126.42, 119.85, 118.82, 111.45 (dd, ${}^{2}J_{\text{trans P-C}} = 137.1$, ${}^{2}J_{\text{cis P-C}} = 20.8$), 104.65 (t, ${}^{3}J_{\text{P-C}} = 16.8$), 65.11, 17.66 (t, $J_{P-C} = 17.4$), 14.91, 8.58. ³¹P{¹H} NMR (CDCl₃): 3.68 (s, $J_{Pt-P} = 2262.8$). IR (cm⁻¹): 3466.7(br), 2967.1(m), 2930.6(m), 2870.8(w), 2104.9(m), 1570.1(m), 1559.4(m), 1540.0(m), 1505.1(m), 1486.6(m), 1457.4(m), 1350.2(s), 1314.3(m), 1253.5(w), 1220.0(w), 1192.7(w), 1142.0(m), 1121.1(m), 1121.1(m), 1089.3(m), 1039.2(m), 914.2(w), 877.1(w), 860.8(w), 765.7(m), 722.6(w). MS (MALDI-TOF): m/z 3554.6 (calculated m/z 3555.0 for [M]⁺). Anal. Calcd for C₁₆₀H₁₉₂Cl₈O₈P₈Pt₄·CHCl₃: C, 52.63; H, 5.29. Found: C, 52.61; H, 4.72.

[*cis*-Pt(PEt₃)₂(L_{3a})]₄ (3). To a 25 mL two-necked round bottom flask containing Pt-2L_{3a} (28.7 mg, 0.018 mmol), *cis*-Pt(PEt₃)₂Cl₂ (9.1 mg, 0.018 mmol) and CuCl(0.8 mg, 0.008 mmol) were added CH₂Cl₂ (9 ml) and diethylamine (0.4 ml) at -10°C, and the reaction mixture was allowed to stir at -10°C for 12 h under N₂ atmosphere with exclusion of light. The volatiles were removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was washed with water, dried over anhydrous

MgSO₄ and evaporated to afford white powdery product which was further purified by silica-gel column chromatography (dichloromethane/ethyl acetate/hexane: 2:2:3 (v/v)) to give [*cis*-Pt(PEt₃)₂(L_{3a})]₄ (12 mg, 34 %). ¹H NMR (CDCl₃), δ 8.70 (d, ⁴*J*_{H-H} = 2.0, 2H), 7.60 (s, 2H), 7.03 (d, ³*J*_{H-H} = 9.0, 2H), 7.00 (dd, ³*J*_{H-H} = 9.0, ⁴*J*_{H-H} = 2.0 Hz, 2H), 6.89 (m, 3H), 6.79 (m, 2H), 4.89 (s, 4H), 2.19 (m, 12H), 1.27 (m, 18H). ¹³C{¹H} NMR (CDCl₃): δ 154.02, 137.36, 132.40, 131.07, 129.46, 127.97, 127.15, 127.01, 126.88, 126.66, 126.61, 126.55, 118.84, 111.52 (dd, ²*J*_{trans P-C} = 143.2, ²*J*_{cis P-C} = 23.2), 104.58 (t, ³*J*_{P-C} = 17.42), 71.19, 17.43 (t, *J*_{P-C} = 17.2), 8.57. ³¹P{¹H} NMR (CDCl₃): 3.60 (s, *J*_{P-P} = 2261.3). IR (cm⁻¹): 3447.3(br), 3057.1(w), 2965.1(m), 2932.9(m), 2873.2(m), 2362.8(m), 2343.1(m), 1350.5(s), 1313.9(s), 1217.0(m), 1120.5(m), 1090.7(s), 1038.6(s), 905.2(w), 857.2(w), 815.5(w), 767.8(m), 732.8(m), 695.7(m), 668.5(w), 635.0(w). MS (FAB): m/z 4052.4 (calculated *m/z* 4051.5 for [M]⁺). Anal. Calcd for C₂₀₀H₂₀₈Cl₈O₈P₈Pt₄·4CHCl₃: C, 54.10; H, 4.72. Found: C, 53.98; H, 4.11.

Figure S1. Energy-minimized structures of 1.

Figure S2. ¹H NMR spectra of L_{2a} , L_2 , Pt-2L₂, Pt-2L_{2a}, and 2.

Figure S3. ¹H NMR spectra of L_{3a} , L_3 , Pt-2L₃, Pt-2L_{3a}, and 3.

Figure S4. IR spectra of L_{1a} , L_1 , Pt-2L₁, Pt-2L_{1a}, and 1.

Figure S5. IR spectra of L_{2a} , L_2 , Pt-2L₂, Pt-2L_{2a}, and 2.

Figure S6. IR spectra of L_{3a} , L_3 , Pt-2L₃, Pt-2L_{3a}, and 3.

Figure S7. UV-Vis spectra of 1-3.

Figure S8. CD spectra of L_{1a-3a} and 1-3.

Figure S9. Excitation and emission spectra of 2 and 3 in CH_2Cl_2 .